新加坡国立大学闫文韬教授学术报告通知
报告题目:High-fidelity modeling of multi-material additive manufacturing: process, structure, and property
报告人:闫文韬教授
时间: 2024年5月17日(星期五)上午 9:00
地点: 活动中心326
邀请人:常帅副教授
报告人简介:闫文韬,新加坡国立大学(NUS)机械工程系教授。2012年获得清华大学工学学士学位,2017年获得清华大学与美国西北大学联合培养博士学位,随后在美国西北大学开展博士后研究并在美国国家标准技术院(NIST)任客座研究员。2018年加入新加坡国立大学独立组建研究团队,在读博士/博后20余人,主要从事金属增材制造(3D打印)的多尺度多物理场模拟、数据驱动建模及实验研究。在Nature Communications, Acta Materialia, Journal of Mechanics and Physics of Solids, International Journal of Machine Tools and Manufacture (IJMTM), Additive Manufacturing等领域内顶级期刊上发表论文110余篇。在NIST AM Bench增材制造模拟挑战赛上获得9个奖项。现任Smart Manufacturing副主编、IJMTM等期刊的编委。
摘要:The wide applications of additive manufacturing are hindered by the lack of comprehensive understanding of process-structure-property relationships. To this end, we have developed and seamlessly integrated a series of high-fidelity multi-physics models. Specifically, multiphase flow models using the coupled computational fluid dynamics and discrete element method simulate the powder spreading procedure and powder spattering and denudation phenomena in the powder melting procedure. The powder melting model is powerful to reproduce the molten pool flow and relevant defects (e.g., lack-of-fusion and keyhole pores) by incorporating the major physical factors, e.g., the composition-dependent evaporation and physically-informed heat source models. The microstructure evolutions at both the grain- and dendrite- scales are modelled using the phase field and cellular automaton methods. The mechanical properties and thermal stresses are simulated using the crystal plasticity finite element model, which incorporates the realistic geometry (rough surfaces and voids), temperature profiles and microstructures. These models have proven powerful in revealing the physical mechanisms and optimizing the manufacturing processes, which have been well validated against various experiments, particularly in-situ observations.